کاربرد های فیزیک در فناوری

فيزيك و كاربردهاي آن در فناوري


 

فيزيك علم شناختن قانون هي عمومي و كلي حاكم بر رفتار ماده و انرژي است. كوشش هي پيگير فيزيكدانان در اين راه سبب كشف بسياري از قانون هي اساسي، بيان نظريه ها و آشنايي با بعضي پديده هي طبيعي شده است. هرچند اين موفقيت ها در برابر حجم ناشناخته ها، اندك است ليكن تلاش همه جانبه و پرشتاب دانشمندان اميد بسيار آفريده كه انسان مي تواند رازهاي هستي را دريابد. انسان در يكي دو قرن اخير، با بهره گيري از روش علمي و ابزارهي دقيق توانسته است در هر يك از شاخه هي علم، به ويژه فيزيك دنياي روشن و شناخته شده خود را وسعت بخشد. در اين مدت با دنيلي بي نهايت كوچك ها آشنا شده، به درون اتم راه يافته تا انواع نيروهاي بنيادي طبيعت را شناخته، الكترون و ويژگي هاي آن را دريافته و طيف گسترده امواج الكترومغناطيسي را كشف كرده است.
فيزيك كه تا اواخر قرن نوزدهم مباحث مكانيك، گرما، صوت، نور و الكتريسيته را شامل مي شد، اكنون در اوايل قرن بيست و يكم در اشتراك با ساير علوم (مانند شيمي، زيست شناسي و...) روز به روز گسترده تر و ژرفاتر شده و بيش از ۳۰ موضوع و مبحث مهم را در برگرفته است (دانشنامه فيزيك تعداد شاخه هاي فيزيك را ۳۳ مورد معرفي كرده است.)

فناوري:
فناوري، چگونگي استفاده از علم، ابزار، راه و روش بري انجام كارها و برآوردن نيازها است. به عبارت ديگر فناوري به كارگيري آگاهي هاي انسان براي تغيير در محيط به منظور رفع نيازها است. اگر علم را فرآيند شناخت طبيعت تعريف كنيم، فناوري فرآيند انجام كارها خواهد بود.در گذشته مثلاً در كشور ايران تا حدود يك صد سال پيش، زندگي ساده و ابتدايي بود و كارها با ابزارهاي ساده و روش هاي اوليه انجام مي شد. كشاورزي، حمل و نقل، تجارت، ساختمان سازي با روش هاي سنتي و ابزارهايي كه در طول زمان از راه تجربه به دست آمده بود صورت مي گرفت.
گرچه انسان به برخي از قانون هاي طبيعي دست يافته بود ليكن علم و عمل كمتر اثر متقابل در يكديگر داشتند. دانشمندان راه خود را مي پيمودند و صنعتگران و ابزاركاران به راه خود مي رفتند تا آنكه عصر جديد آغاز شد و تمدني به وجود آمد كه همه چيز در راه مصالح زندگي انسان و توانايي او به كار گرفته شد.
در سال ۱۶۶۳ ميلادي «جامعه سلطنتي لندن» تاسيس شد و هدف خود را ارتقاي سطح علوم مربوط به امور و پديده هاي طبيعي و هنرهاي مفيد از طريق آزمايش و تجربه به نفع «ابناي بشر» انتخاب كرد. چهار سال بعد فرهنگستان علوم فرانسه در پاريس شكل گرفت و بر مفيد واقع شدن علم تاكيد فراوان شد. اعضاي اين فرهنگستان براي هرچه به ثمر رساندن تحقيقات علمي در زندگي انسان، به تلاش پرداخته و از اين بابت حقوق دولتي دريافت مي كردند.(۱)
در سال ۱۸۵۳ موزه علوم لندن با نام «هيات معتمدين دايره علم و هنر و موزه ملي علم و صنعت» گشايش يافت اما نزديك تر شدن علم و صنعت سبب شد كه در سال ۱۸۸۲ بخش هاي مختلف اين موسسه در هم ادغام شود و سازمان جديدي با نام «دايره علوم كاربردي و تكنولوژي» تاسيس شود.

•نقش فيزيك در فناوري
علم، كوشش در جهت دانايي و فناوري تلاشي در جهت توانايي است. اين هر دو اثر متقابل در هم داشته اند. دانش سبب شد كه ابزارها و روش ها كامل تر شوند و ابزارها نيز دقت انسان را در اندازه گيري ها و رسيدن به نتايج علمي بيشتر كرده است.
اكنون بسياري از موضوع ها و مباحث فيزيك پيامدهاي كاربردي داشته و عملاً در فناوري ها موثر بوده است. فناوري هي ارتباطات، فناوري هاي حمل ونقل (خشكي، دريايي، هوايي و فضايي)،فناوري هاي توليد (كشاورزي-صنعتي)، فناوري هاي استخراج انواع معادن و فناوري هاي ساختمان و انواع ماشين ها و فناوري هاي آموزشي وابسته به دانش مكانيك، الكتريسيته، الكترومغناطيس، ترموديناميك، فيزيك هسته اي، نورشناسي، فيزيك بهداشت، فيزيك پزشكي و... است.
در اين مقاله فقط به نقش فيزيك در فناوري هاي بهداشت و درمان مي پردازيم تا مشخص شود چه اندازه فيزيك در تشخيص و درمان بيماري ها و بهداشت محيط مؤثر است.

•نقش فيزيك در تشخيص بيماري ها
پزشكان براي تشخيص بيماري ها از انواع وسايل ساده مانند دماسنج و فشارسنج، گوشي طبي (استتوسكوپ) تا دستگاه هاي بسيار پيچيده مانند ميكروسكوپ الكتروني، ليزر و هولوگراف كه همه براساس قانون هي فيزيك طراحي و ساخته شده استفاده مي كنند. در اين قسمت به ساختمان و طرز كار برخي از آنها مي پردازيم.

• راديوگرافي و راديوسكوپي
راديوگرافي عكسبرداري از بدن با پرتوهاي ايكس و راديوسكوپي مشاهده مستقيم بدن با آن پرتوها است. در عكاسي معمولي از نوري كه از چيزها بازتابش مي شود و بر فيلم عكاسي اثر مي كند استفاده مي شوند در صورتي كه در راديوگرافي پرتوهايي را كه از بدن مي گذرند به كار مي برند.
پرتوهي ايكس را نخستين بار در سال ۱۸۹۵ ميلادي، "ويلهلم كنراد رنتيگن" استاد فيزيك دانشگاه ورتسبورگ آلمان كشف كرد. اين كشف بسيار شگفت انگيز بود و خبر آن با سرعت در روزنامه هاي جهان منتشر شد. جالب است كه رنتيگن بر روي پرتوهاي كاتدي كار مي كرد و به طور اتفاقي متوجه شد كه وقتي اين پرتوها، كه همان الكترون هاي سريع هستند به مواد سخت و فلزات سنگين برخورد مي كنند پرتوهي ناشناخته اي توليد مي شود او اين پرتوها را پرتو ايكس به معني مجهول ناميد.
پرتوهاي ايكس قدرت نفوذ و عبور بسيار زياد دارند. به آساني از كاغذ، مقوا، چوب، گوشت و حتي فلزهي سبك مانند آلومينيوم مي گذرند، ليكن فلزهاي سنگين مانند سرب مانع عبور آنها مي شود. اشعه ايكس از استخوان هاي بدن كه از مواد سنگين تشكيل شده اند عبور نمي كنند در صورتي كه از گوشت بدن به آساني مي گذرند. همين خاصيت سبب شده كه آن را بري عكسبرداري از استخوان هاي بدن به كار برند و محل شكستگي استخوان ها را مشخص كنند. براي عكسبرداري از روده و معده هم از پرتوهي ايكس استفاده مي شود ليكن براي اين كار ابتدا به شخص مايعاتي مانند سولفات باريم مي خورانند تا پوشش كدري اطراف روده و معده را بپوشاند و سپس راديوگرافي صورت مي دهند.
كشف پرتوهي ايكس كه به وسيله رنتيگن عملي شد سرآغاز فعاليت هي دانشمنداني مانند تامسون، بور، رادرفورد، ماري كوري، پيركوري، باركلا و بسياري ديگر شد به طوري كه نه فقط چگونگي توليد، تابش و اثرهاي پرتو ايكس و گاما و نور شناخته شد بلكه خود اشعه ايكس يكي از ابزارهي شناخت درون ماده شد و انسان را با جهان بي نهايت كوچك ها آشنا كرد و انرژي عظيم اتمي را در اختيار بشر قرار داد.
پرتوهاي ايكس در پزشكي و بهداشت براي پيشگيري، تشخيص و درمان به كار مي رود به طوري كه در فناوري هاي مربوطه يكي از ابزارهاي اساسي است.

•سونوگرافي
سونوگرافي عكسبرداري با امواج فراصوت است. فراصوت امواج مكانيكي مانند صوت (۲) است كه بسامد آن بيش از ۲۰ هزار هرتز است. اين امواج را مي توان با استفاده از نوسانگر پتروالكتريك يا نوسانگر مغناطيسي توليد كرد.
خاصيت پيزوالكتريك عبارت است از ايجاد اختلاف پتانسيل الكتريكي در دو طرف يك بلور هنگامي كه آن بلور تحت فشار يا كشش قرار گيرد و نيز انبساط و انقباض آن بلور هنگامي كه تحت تاثير يك ميدان الكتريكي واقع شود. بنابراين هرگاه از يك بلور كوارتز تيغه متوازي السطوحي عمود بر يكي از محورهي بلور تهيه كنيم و اين تيغه را ميان دو صفحه نازك فولادي قرار دهيم و آن دو صفحه را به اختلاف پتانسيل متناوبي وصل كنيم، تيغه كوارتز با همان بسامد جريان منبسط و منقبض مي شود و به ارتعاش درمي آيد و در نتيجه امواج فراصوت توليد مي كند. پديده پيزوالكتريك در سال ۱۸۸۰ به وسيله "پيركوري" كشف شد و از آن علاوه بر توليد امواج فراصوتي، در ميكروفن هاي كريستالي و فندك استفاده مي شود.
امواج فراصوتي داري انرژي بسيار زياد است و مي تواند سبب بالا رفتن دماي بافت هاي بدن انسان، سوختگي و تخريب سلول ها شود. از اين امواج در دريانوردي، صنعت و پزشكي استفاده مي شود.
در پزشكي بري تشخيص، درمان و تحقيقات اين امواج را به كار مي برند. دستگاهي كه براي عكسبرداري به كار مي رود اكوسكوپ (۳) يا سونوسكوپ (۴) است. اساس كار عكسبرداري با امواج فراصوت بازتابش امواج است در اين عمل دستگاه گيرنده و فرستنده موجود است و از بسامدهي ميان يك ميليون تا پانزده ميليون هرتز استفاده مي كنند. دستگاه مولد ضربه هاي موجي در زمان هاي بسيار كوتاه يك تا پنج ميليونيم ثانيه را در حدود ۲۰۰ ضربه در ثانيه مي فرستد و اين ضربه ها در بدن نفوذ مي كند و چنانچه به محيطي برخورد كند كه غلظت آن با محيط قبلي متفاوت باشد پديده بازتابش روي مي دهد و با توجه به غلظت نسبي دو محيط مقداري از انرژي ضربه هي فراصوت بازتابش مي شود. دستگاه گيرنده اين امواج را دريافت مي كند و به كمك دستگاه الكتروني و يك اسيلوسكوپ آن را به نقطه يا نقاط نوراني به تصوير تبديل مي كند. عكسبرداري با فراصوت را بري تشخيص بيماري هاي قلب، چشم، اعصاب، پستان، كبد و لگن انجام مي دهند.

 •وسايل الكتروپزشكي
بخشي از وسايل تشخيص بيماري ها، دستگاه هايي هستند كه براساس قانون هاي مربوط به الكتريسيته و الكترونيك ساخته و به كار گرفته مي شوند. نمونه اي از اين دستگاه ها عبارتند از الكتروكارديوگراف، الكتروبيوگراف و الكترو آسفالوگراف. اين دستگاه ها مي توانند با رسم نمودارهايي وضع سلامت يا بيماري را بري پزشك مشخص كنند. ممكن است اين دستگاه ها مجهز به نوسان نگار باشند و در نتيجه نمودارها مستقيماً بر روي يك صفحه تلويزيون مشاهده شود. نمونه اين دستگاه ها كارديوسكوپ است كه معمولاً در اتاق بيمار قرار مي گيرد و بر آن منحني ضربان قلب بيمار مشاهده مي شود. در الكتروكارديوگراف به جاي آنكه منحني ها مستقيماً ديده شود آن منحني ها (نمودارها) بر روي نواري از كاغذ ثبت و ضبط مي شود و پزشك از روي آنها مي تواند وضعيت قلب و نوع بيماري را تشخيص دهد.
الكتروآنسفالوگرافي دستگاهي است كه با آن بيماري هايي چون صرع، تومورهاي مغزي، ضربه، اعتياد به دارو و الكل تشخيص داده مي شود و كار اين دستگاه با استفاده از فعاليت هاي الكتريكي كه در سطح بدن ظاهر مي شود، صورت مي گيرد. اندازه گيري ها نشان مي دهد كه در قشر مغز تغييرات پتانسيل الكتريكي منظمي انجام مي شود. «اين پتانسيل هاي الكتريكي به استثناي حالت بيهوشي عميق يا قطع جريان خون به مغز هميشه وجود دارند. هنگامي كه قشر مغز خراب شود، اين نقش تغيير مي كند. با قرار دادن الكترودهاي پهن يا الكترودهاي سوزني شكل بر روي پوست سر مي توان امواج را از پوست سر به سمت دستگاه ثبات هدايت كرد ... اين امواج نتيجه پتانسيل هاي كار نورون هاي عصبي قشر مغزند كه در سطح مغز ظاهر مي شوند ... خاصيت مهم اين امواج بسامد آنها است. گستره معمولي اين بسامد از يك تا ۶۰ هرتز تغيير مي كند ... اين امواج برحسب بسامد، ولتاژ، محل هاي تلاقي، شكل امواج و نقش هايي كه دارند، ارزيابي مي شوند.»


• اسكن (تهيه طرح هاي سه بعدي از بدن)
در سال هاي ۷۰-۱۹۶۰ براي تشخيص بيماري ها چهار روش جديد ابداع شد:
الف) گرمانگاري: نخستين روش گرمانگاري بود كه در سال ۱۹۶۲ عرضه شد. مي دانيم كه هر جسمي كه دمايش بالاتر از صفر مطلق (۲۷۳- درجه سلسيوس) باشد از خود امواجي تابش مي كند كه به نام امواج گرمايي معروف است. از اين خاصيت يعني انتشار امواج گرمايي از بدن انسان استفاده شده و اختلاف دماي قسمتي از بدن را به صورت تصويري رنگي تهيه مي كنند. اين روش بري تحقيق و بررسي رگ هاي خوني سطحي بدن مفيد است و با آن مي توان از وجود تومورها نيز باخبر شد.
ب) توموگرافي: پرتوهي ايكس مي توانند از بافت هي نرم بگذرند، ليكن ميزان جذب يا عبور آنها به غلظت بافت بستگي دارد. چنانچه پرتو ايكس در مسير خود از غده اي بگذرد، ميزان جذب آن نسبت به وضعيتي كه غده وجود نداشته باشد، تفاوت مي كند. به كمك كامپيوتر مي توانند تصويري را كه از بدن گرفته اند، پردازش كنند و اطلاعات دقيق مربوط به ساختمان بدن و وجود غده را مشخص نمايند. عملي كه با كمك پرتو ايكس و كامپيوتر براي تعيين غده ها صورت مي گيرد را توموگرافي مي نامند.
پ) هولوگرافي (تمام نگاري): دنيس گابور فيزيكدان نوع جديدي از عكاسي را در سال ۱۹۴۷ ابداع كرد كه بعداً در موارد گوناگون از جمله در پزشكي از آن استفاده شد. هولوگرافي براساس خواص امواج متكي است و تصويري كه از ريزشيء گرفته مي شود، سه بعدي است. در اين طريقه تصويري كه از هر عضو بدن گرفته مي شود، كاملاً همه قسمت هاي اطراف آن عضو ديده مي شود. بري تهيه عكس سه بعدي معمولاً از پرتوهاي ليزر استفاده مي شود.
ت) دستگاه تشديد مغناطيسي NMR :اساس اين دستگاه بر اين خاصيت است كه هسته اتم هاي خاصي در صورت قرار گرفتن در ميدان مغناطيسي امواجي از خود تابش مي كنند كه قابل رديابي است. اين پديده در سال ۱۹۴۰ شناخته شد و كاربرد آن در پزشكي بري نخستين بار در سوئد توسط «اريش اودبلاد» (5) و از دهه ۱۹۵۰ شروع شد.
در سال ۱۹۷۳ در انگليس از طريق رديابي تابش تراكم اتم هي هيدروژن در بافت هي مختلف بدن نخستين تصوير NMR  تهيه شد. از سال ۱۹۷۷ به بعد تصوير از مغز نيز به اين وسيله گرفته شد.

-------پي نوشت ها--------
1- هنرهاي مفيد: پس از گذشت بيش از سه قرن، بعيد به نظر مي رسد كه دريابيم آن چهل تن عضو جامعه سلطنتي از كلمه «هنرهاي مفيد» چه منظوري داشتند كه به تعبير خود آنان مي بايست از كاربرد معلومات علمي الهام مي گرفت. البته با رجوع به مباحث اوليه آنان روشن مي شود كه آنها مكانيزه كردن روند صنايع را به طور اخص در سر داشتند كه قبلاً شروع شده بود و پيش بيني مي شد كه تا آغاز انقلاب صنعتي در يك قرن بعد به طور كامل شكوفا شود. نتيجتاً «هنرهاي مفيد» را مي توان با تكنولوژي آن روز معادل دانست. اختراعات و اكتشافات قرن بيستم صفحه ۱۴
۲- صوت، امواج مكانيكي با بسامد ۲۰ تا ۲۰ هزار هرتز است. امواج كمتر از ۲۰ هرتز را فروصوت و امواج بالاتر از ۲۰ هزار هرتز را فراصوت مي نامند.
۳- Echoscope
۴- Sonoscope
۶-

فیزیک,فیزیک چیست,علم فیزیک چیست

 

 

 

فیزیک و کاربردهای آن

 

فیزیک،‌ علم شناختن قانون‌های عمومی و کلی حاکم بر رفتار ماده و انرژی است. کوشش‌های پیگیر فیزیکدانان در این راه سبب کشف بسیاری از قانون‌های اساسی، بیان نظریه‌ها و آشنایی با بعضی پدیده‌های طبیعی شده است. هر چند این موفقیت‌ها در برابر حجم ناشناخته‌ها،‌ اندک است، ولی تلاش همه جانبه و پرشتاب دانشمندان، امید بسیار آفریده که انسان می‌تواند رازهای هستی را در‌یابد.

 

 

 

فیزیک که تا اواخر قرن نوزدهم مباحث مکانیک، گرما، نور، صوت، الکتریسیته را شامل می‌شد، اکنون در اوایل قرن بیست‌و یکم در اشتراک با سایر علوم( مانند شیمی، زیست‌شناسی و …) روز‌به‌روز گسترده‌تر و عمیق‌تر شده و بیش از ۳۰ موضوع و مبحث مهم را دربرگرفته است (در دانشنامه فیزیک تعداد شاخه‌های فیزیک را ۳۳ شاخه معرفی کرده است).

 

نقش فیزیک در فناوری

 

علم، کوششی در جهت دانایی و فناوری تلاشی در جهت توانایی است. این هر دو اثر متقابل درهم داشته‌اند. دانش سبب شده که ابزارها و روش‌ها کامل شوند و ابزارها نیز دقت انسان را در اندازه‌گیری‌ها و رسیدن به نتایج علمی بیشتر کرده است.

 

 

 

اکنون بسیاری از موضوع‌ها ومباحث فیزیک پیامدهای کاربردی داشته و در عمل فیزیک در فناوری‌ها مؤثر بوده است.از جمله میتوان گفت فیزیک در فناوری‌های ارتباطات، فناوری‌های حمل و نقل( خشکی، دریایی، هوایی و فضایی)، فناوری‌های تولید( کشاورزی- صنعتی)، فناوری‌های استخراج انواع معادن و فناوری‌های ساختمان و انواع ماشین‌ها و فناوری‌های آموزشی به دانش مکانیک،‌ الکتریسیته، الکترومغناطیسی، ترمودینامیک و فیزیک هسته‌ای، نورشناسی، فیزیک بهداشت و فیزیک پزشکی و … وابسته است.

 

 

 

نقش فیزیک در فناوری‌های آموزشی

 

بسیاری از شاخه‌های فیزیک به طور مستقیم و غیرمستقیم در تولید تجهیزات ورسانه‌های آموزشی و روش‌های آن مؤثر است.به طور اصولی هرگونه یادگیری از طریق حواس و در ارتباط با محیط صورت می‌گیرد و علم فیزیک توانسته است توانایی حواس مارا بسیار افزایش دهد و ما رانه تنها به اطراف خود بلکه به زمان‌ها و مکان‌های ناپیدا و دور نیز پیوند دهد.

 

 

 

در این نوشته به بخشی از اثرهای فیزیک در آموزش و پرورش اشاره می‌کنیم:

 

 

 

1- نور و وسایل نوری: مبحث نور یکی از شاخه‌های فیزیک است که در این شاخه از فیزیک از ماهیت و رنگ نور، رفتارهای نور و نیز چشم و دستگاه‌های نوری بحث می‌شود. بعضی از دستگاه‌های نوری مرتبط با مباحث فیزیک که به منزله تجهیزات آموزشی به کار می‌روند، عبارت‌اند از: عدسی‌ها و میکروسکپ برای دیدن اشیای ریز،‌دوربین و تلسکوپ برای دیدن چیزهای دور، دوربین‌های عکاسی و فیلمبرداری برای تهیه و مشاهده تصاویر، طیف‌نما برای تجزیه رنگ‌های نور و بررسی اجسام نور‌دهنده. دستگاه‌های نور از وسایلی هستند که در آموزش کاربرد فراوان دارند.

 

 

 

 

 

نمونه ای دیگر از کاربرد فیزیک کشف پرتوهای فرابنفش، ایکس و گاما از یک طرف و از طرف دیگر کشف پرتوهای فروسرخ و مایکرویو امواج رادیویی است، اختراع انواع دستگاه‌هایی که با این امواج کار می‌کنند سبب شده که بتوانیم به بررسی چیزهایی بپردازیم که در فاصله بسیار دور قرار دارند و یا آن که چشم ما به طور مستقیم قادر نیست که آن‌ها را از پس مواد کدر ببیند. به کمک اشعه ایکس می‌توانیم ساختمان درون بدن را مطالعه کنیم و با دوربین‌های فرابنفش و فرسرخ از منظره‌هایی عکس بگیریم که مشاهده آن‌ها ممکن نیست.

 

 

 

فیزیک,فیزیک چیست,علم فیزیک چیست

 

 

 

2-صوت و وسایل صوتی: در مبحث صوت(آکوستیک) از ماهیت صوت و رفتارهای آن و نیز گوشی و وسایل صوتی بحث می‌شود. در گذشته اگر تجهیزات صوتی مدارس فقط زنگ مدرسه بود که با صدای رسای ناظم، دانش‌آموزان را به کلاس درس هدایت می‌کرد تا سخنان معلم را بشنوند و به خاطر بسپارند و بعد فراموش کنند، اکنون به جای آن” وسایل سمعی_ بصری” به کار گرفته می‌شود. دیگر معلم، سخنگو نیست بلکه راهنمایی است که به دانش‌آموزان کمک می‌کند تا وسایل را خود به کار اندازند و از ضبط صوت، رادیو، تلویزیون و … برای آموختن استفاده کنند.

 

 

 

3- الکتریسیته و الکترونیک: روزی که گالوانی، پزشک ایتالیایی، متوجه جریان الکتریسیته شد یا زمانی که ولتا، اهم و فارادی، ماکسول و هرتز و ملیکان بر روی الکتریسیته و موج و الکترون کار می‌کردند نمی‌دانستند جریانی از علم و صنعت را به وجود می‌آورند که این شاخه از فیزیک بر همه ابعاد زندگی انسان اثر می‌گذارد و به طور مثال ” شبکه‌های اطلاعاتی(اینترنت)‌به وجود می‌آورد که بزرگ‌ترین تحول را در آموزش و پرورش ایجاد می‌کند. کافی است که بگوییم مطالعات فیزیک در شاخه‌های  نور، الکتریسیته، صوت، مکانیک، امواج، الکترونیک و … سبب اختراعاتی چون ماهواره ، مخابرات دوربرد و اینترنت شده و جهان را به صورت یک دهکده(دهکده جهانی)‌ درآورده و جهانی شدن آموزش و پرورش و اقتصاد و فرهنگ را شکل داده است.

 

فیزیک و نقش مدیر دانش آموخته فیزیک

 

سال ۲۰۰۵ میلادی به عنوان سال جهانی فیزیک انتخاب و اعلام شده است. در خصوص هدف ها و برنامه های محلی، منطقه ای و جهانی فیزیک بحث های مفصلی در جریان است.

 

 

 

یکی از این بخش ها اثر علم فیزیک و فیزیکدانان در انواع فناوری ها، هنرها، فلسفه، جهان بینی و رفتار انسان است. حال این پرسش مطرح است که آیا علم فیزیک یا فیزیکدانان در مدیریت هم، اثر چشم گیری داشته یا دارند؟ آیا مدیرانی که زمینه تحصیلات آن ها فیزیک بوده است، در انجام وظایف مدیریت که برنامه ریزی، سازماندهی، آموزش، انگیزش، هدایت، نظارت، هماهنگی و نوآوری در محدوده مسئولیت خود بوده، موفق یا ممتاز از دیگران بوده اند؟

 

فیزیک، علم مطالعه جهان قانونمند است. فیزیک کل نگر است و زمان و مکان، آن را محدود نمی کند. فیزیک مشخص کرده که همه چیز از جزء و کل در حرکت و دگرگونی، بر طبق قوانین مشخص و منظم است. فیزیک در میان تنوع پدیده ها به مطالعه رابطه میان آن ها می اندیشد و به دنبال یافتن وحدت نیروها در میان انبوه واکنش ها است.

 

 

 

اما فیزیکدان از میدان و نبرد آگاه است و می داند برای آن که کاری زیاد و تندتر انجام شود، باید نیروها را هم جهت کرد و در راستای رسیدن به هدف به کار گرفت. او از بازده و راندمان باخبر است و می داند که برای افزایش بازده باید موانع را برطرف کرد، فناوری های نو را به کار گرفت، راه های اتلاف انرژی را کاهش داد، از بازیافت هم استفاده کرد و همواره به دنبال یافتن روش های نو بود.

 

فیزیکدان می داند که امور جهان بر نظم استوار و جهان مقصد است و نباید به دست انسان نابود و آلوده شود و می داند ارزش هیچ چیزی به پایه ارزش انسان های شرافتمند، سازنده و نیکوکار نمی رسد و چنین انسان هایی را باید در خانواده ها و مدارس تربیت کرد.

 

دانش آموخته فیزیک می داند که برای رسیدن به هدف های آموزش و پرورش لازم است شرایطی به وجود آورد که فرد انسانی داناتر و تواناتر باشد، افراد در جهت رسیدن به هدف هم راستا و هماهنگ باشند، نیازهایشان به درستی برطرف شود. همچنان که اگر به خودرو سوخت مناسب و کافی برسد و موتور آن قدرتمند و راه بی خطر و صاف، سرنشینان به سلامت به مقصد خواهند رسید. 

 

منبع:تلخیص ازشبکه فیزیک ایران

چند دقیقه با دانستنی ها

 

نگاهی به نقش فیزیک و کاربردهای آن در فناوری دایره علوم کاربردی و تکنولوژی


نگاهی به نقش فیزیک و کاربردهای آن در فناوری دایره علوم کاربردی و تکنولوژیفیزیک علم شناختن قانون های عمومی و کلی حاکم بر رفتار ماده و انرژی است. کوشش های پیگیر فیزیکدانان در این راه سبب کشف بسیاری از قانون های اساسی، بیان نظریه ها و آشنایی با بعضی پدیده‌های طبیعی شده است. هرچند این موفقیت ها در برابر حجم ناشناخته ها، اندک است لیکن تلاش همه جانبه و پرشتاب دانشمندان امید بسیار آفریده که انسان می تواند رازهای هستی را دریابد. انسان در یکی دو قرن اخیر، با بهره گیری از روش علمی و ابزارهای دقیق توانسته است در هر یک از شاخه های علم، به ویژه فیزیک دنیای روشن و شناخته شده خود را وسعت بخشد. در این مدت با دنیای بی نهایت کوچک ها آشنا شده، به درون اتم راه یافته تا انواع نیروهای بنیادی طبیعت را شناخته، الکترون و ویژگی های آن را دریافته و طیف گسترده امواج الکترومغناطیسی را کشف کرده است.
فیزیک که تا اواخر قرن نوزدهم مباحث مکانیک، گرما، صوت، نور و الکتریسیته را شامل می شد اکنون در اوایل قرن بیست و یکم در اشتراک با سایر علوم (مانند شیمی، زیست شناسی و...) روز به روز گسترده تر و ژرفاتر شده و بیش از ۳۰ موضوع و مبحث مهم را در برگرفته است (دانشنامه فیزیک تعداد شاخه های فیزیک را ۳۳ مورد معرفی کرده است.)
• فناوری
فناوری، چگونگی استفاده از علم، ابزار، راه و روش برای انجام کارها و برآوردن نیازها است. به عبارت دیگر فناوری به کارگیری آگاهی های انسان برای تغییر در محیط به منظور رفع نیازها است. اگر علم را فرآیند شناخت طبیعت تعریف کنیم، فناوری فرآیند انجام کارها خواهد بود.در گذشته مثلاً در کشور ایران تا حدود یک صد سال پیش، زندگی ساده و ابتدایی بود و کارها با ابزارهای ساده و روش های اولیه انجام می شد. کشاورزی، حمل ونقل، تجارت، ساختمان سازی با روش های سنتی و ابزارهایی که در طول زمان از راه تجربه به دست آمده بود صورت می گرفت.
گرچه انسان به برخی از قانون های طبیعی دست یافته بود لیکن علم و عمل کمتر اثر متقابل در یکدیگر داشتند. دانشمندان راه خود را می پیمودند و صنعتگران و ابزارکاران به راه خود می رفتند تا آنکه عصر جدید آغاز شد و تمدنی به وجود آمد که همه چیز در راه مصالح زندگی انسان و توانایی او به کار گرفته شد.
در سال ۱۶۶۳ میلادی «جامعه سلطنتی لندن» تاسیس شد و هدف خود را ارتقای سطح علوم مربوط به امور و پدیده های طبیعی و هنرهای مفید از طریق آزمایش و تجربه به نفع «ابنای بشر» انتخاب کرد. چهار سال بعد فرهنگستان علوم فرانسه در پاریس شکل گرفت و بر مفید واقع شدن علم تاکید فراوان شد. اعضای این فرهنگستان برای هرچه به ثمر رساندن تحقیقات علمی در زندگی انسان، به تلاش پرداخته و از این بابت حقوق دولتی دریافت می کردند.۱
در سال ۱۸۵۳ موزه علوم لندن با نام «هیات معتمدین دایره علم و هنر و موزه ملی علم و صنعت» گشایش یافت اما نزدیک تر شدن علم و صنعت سبب شد که در سال ۱۸۸۲ بخش های مختلف این موسسه در هم ادغام شود و سازمان جدیدی با نام «دایره علوم کاربردی و تکنولوژی» تاسیس شود.
• نقش فیزیک در فناوری
علم، کوشش در جهت دانایی و فناوری تلاشی در جهت توانایی است. این هر دو اثر متقابل در هم داشته اند. دانش سبب شد که ابزارها و روش ها کامل تر شوند و ابزارها نیز دقت انسان را در اندازه گیری ها و رسیدن به نتایج علمی بیشتر کرده است.
اکنون بسیاری از موضوع ها و مباحث فیزیک پیامدهای کاربردی داشته و عملاً در فناوری ها موثر بوده است. فناوری های ارتباطات، فناوری های حمل ونقل (خشکی، دریایی، هوایی و فضایی)،فناوری های تولید (کشاورزی _ صنعتی)، فناوری های استخراج انواع معادن و فناوری های ساختمان و انواع ماشین ها و فناوری های آموزشی وابسته به دانش مکانیک، الکتریسیته، الکترومغناطیس، ترمودینامیک، فیزیک هسته ای، نورشناسی، فیزیک بهداشت، فیزیک پزشکی و... است.
در این مقاله فقط به نقش فیزیک در فناوری های بهداشت و درمان می پردازیم تا مشخص شود چه اندازه فیزیک در تشخیص و درمان بیماری ها و بهداشت محیط موثر است.
•نقش فیزیک در تشخیص بیماری ها
پزشکان برای تشخیص بیماری ها از انواع وسایل ساده مانند دماسنج و فشارسنج، گوشی طبی (استتوسکوپ) تا دستگاه های بسیار پیچیده مانند میکروسکوپ الکترونی، لیزر و هولوگراف که همه براساس قانون های فیزیک طراحی و ساخته شده استفاده می کنند. در این قسمت به ساختمان و طرز کار برخی از آنها می پردازیم.
• رادیوگرافی و رادیوسکوپی
رادیوگرافی عکسبرداری از بدن با پرتوهای ایکس و رادیوسکوپی مشاهده مستقیم بدن با آن پرتوها است. در عکاسی معمولی از نوری که از چیزها بازتابش می شود و بر فیلم عکاسی اثر می کند استفاده می شوند در صورتی که در رادیوگرافی پرتوهایی را که از بدن می گذرند به کار می برند.
پرتوهای ایکس را نخستین بار در سال ۱۸۹۵ میلادی، ویلهلم کنراد رنتیگن استاد فیزیک دانشگاه ورتسبورگ آلمان کشف کرد. این کشف بسیار شگفت انگیز بود و خبر آن با سرعت در روزنامه های جهان منتشر شد. جالب است که رنتیگن بر روی پرتوهای کاتدی کار می کرد و به طور اتفاقی متوجه شد که وقتی این پرتوها، که همان الکترون های سریع هستند به مواد سخت و فلزات سنگین برخورد می کنند پرتوهای ناشناخته ای تولید می شود او این پرتوها را پرتو ایکس به معنی مجهول نامید.
پرتوهای ایکس قدرت نفوذ و عبور بسیار زیاد دارند. به آسانی از کاغذ، مقوا، چوب، گوشت و حتی فلزهای سبک مانند آلومینیوم می گذرند، لیکن فلزهای سنگین مانند سرب مانع عبور آنها می شود. اشعه ایکس از استخوان های بدن که از مواد سنگین تشکیل شده اند عبور نمی کنند در صورتی که از گوشت بدن به آسانی می گذرند. همین خاصیت سبب شده که آن را برای عکسبرداری از استخوان های بدن به کار برند و محل شکستگی استخوان ها را مشخص کنند. برای عکسبرداری از روده و معده هم از پرتوهای ایکس استفاده می شود لیکن برای این کار ابتدا به شخص مایعاتی مانند سولفات باریم می خورانند تا پوشش کدری اطراف روده و معده را بپوشاند و سپس رادیوگرافی صورت می دهند.
کشف پرتوهای ایکس که به وسیله رنتیگن عملی شد سرآغاز فعالیت های دانشمندانی مانند تامسون، بور، رادرفورد، ماری کوری، پیرکوری، بارکلا و بسیاری دیگر شد به طوری که نه فقط چگونگی تولید، تابش و اثرهای پرتو ایکس و گاما و نور شناخته شد بلکه خود اشعه ایکس یکی از ابزارهای شناخت درون ماده شد و انسان را با جهان بی نهایت کوچک ها آشنا کرد و انرژی عظیم اتمی را در اختیار بشر قرار داد.
پرتوهای ایکس در پزشکی و بهداشت برای پیشگیری، تشخیص و درمان به کار می رود به طوری که در فناوری های مربوطه یکی از ابزارهای اساسی است.
• سونوگرافی
سونوگرافی عکسبرداری با امواج فراصوت است. فراصوت امواج مکانیکی مانند صوت ۲ است که بسامد آن بیش از ۲۰ هزار هرتز است. این امواج را می توان با استفاده از نوسانگر پتروالکتریک یا نوسانگر مغناطیسی تولید کرد.خاصیت پیزوالکتریک عبارت است از ایجاد اختلاف پتانسیل الکتریکی در دو طرف یک بلور هنگامی که آن بلور تحت فشار یا کشش قرار گیرد و نیز انبساط و انقباض آن بلور هنگامی که تحت تاثیر یک میدان الکتریکی واقع شود. بنابراین هرگاه از یک بلور کوارتز تیغه متوازی السطوحی عمود بر یکی از محورهای بلور تهیه کنیم و این تیغه را میان دو صفحه نازک فولادی قرار دهیم و آن دو صفحه را به اختلاف پتانسیل متناوبی وصل کنیم، تیغه کوارتز با همان بسامد جریان منبسط و منقبض می شود و به ارتعاش درمی آید و در نتیجه امواج فراصوت تولید می کند. پدیده پیزوالکتریک در سال ۱۸۸۰ به وسیله پیرکوری کشف شد و از آن علاوه بر تولید امواج فراصوتی، در میکروفن های کریستالی و فندک استفاده می شود.
امواج فراصوتی دارای انرژی بسیار زیاد است و می تواند سبب بالا رفتن دمای بافت های بدن انسان، سوختگی و تخریب سلول ها شود. از این امواج در دریانوردی، صنعت و پزشکی استفاده می شود.
در پزشکی برای تشخیص، درمان و تحقیقات این امواج را به کار می برند. دستگاهی که برای عکسبرداری به کار می رود اکوسکوپ۳ یا سونوسکوپ۴ است. اساس کار عکسبرداری با امواج فراصوت بازتابش امواج است در این عمل دستگاه گیرنده و فرستنده موجود است و از بسامدهای میان یک میلیون تا پانزده میلیون هرتز استفاده می کنند. دستگاه مولد ضربه های موجی در زمان های بسیار کوتاه یک تا پنج میلیونیم ثانیه را در حدود ۲۰۰ ضربه در ثانیه می فرستد و این ضربه ها در بدن نفوذ می کند و چنانچه به محیطی برخورد کند که غلظت آن با محیط قبلی متفاوت باشد پدیده بازتابش روی می دهد و با توجه به غلظت نسبی دو محیط مقداری از انرژی ضربه های فراصوت بازتابش می شود. دستگاه گیرنده این امواج را دریافت می کند و به کمک دستگاه الکترونی و یک اسیلوسکوپ آن را به نقطه یا نقاط نورانی به تصویر تبدیل می کند. عکسبرداری با فراصوت را برای تشخیص بیماری های قلب، چشم، اعصاب، پستان، کبد و لگن انجام می دهند.
•وسایل الکتروپزشکی
بخشی از وسایل تشخیص بیماری ها، دستگاه هایی هستند که براساس قانون های مربوط به الکتریسیته و الکترونیک ساخته و به کار گرفته می شوند. نمونه ای از این دستگاه ها عبارتند از الکتروکاردیوگراف، الکتروبیوگراف و الکترو آسفالوگراف. این دستگاه ها می توانند با رسم نمودارهایی وضع سلامت یا بیماری را برای پزشک مشخص کنند. ممکن است این دستگاه ها مجهز به نوسان نگار باشند و در نتیجه نمودارها مستقیماً بر روی یک صفحه تلویزیون مشاهده شود. نمونه این دستگاه ها کاردیوسکوپ است که معمولاً در اتاق بیمار قرار می گیرد و بر آن منحنی ضربان قلب بیمار مشاهده می شود. در الکتروکاردیوگراف به جای آنکه منحنی ها مستقیماً دیده شود آن منحنی ها (نمودارها) بر روی نواری از کاغذ ثبت و ضبط می شود و پزشک از روی آنها می تواند وضعیت قلب و نوع بیماری را تشخیص دهد.
الکتروآنسفالوگرافی دستگاهی است که با آن بیماری هایی چون صرع، تومورهای مغزی، ضربه، اعتیاد به دارو و الکل تشخیص داده می شود و کار این دستگاه با استفاده از فعالیت های الکتریکی که در سطح بدن ظاهر می شود، صورت می گیرد. اندازه گیری ها نشان می دهد که در قشر مغز تغییرات پتانسیل الکتریکی منظمی انجام می شود. «این پتانسیل های الکتریکی به استثنای حالت بیهوشی عمیق یا قطع جریان خون به مغز همیشه وجود دارند. هنگامی که قشر مغز خراب شود، این نقش تغییر می کند. با قرار دادن الکترودهای پهن یا الکترودهای سوزنی شکل بر روی پوست سر می توان امواج را از پوست سر به سمت دستگاه ثبات هدایت کرد... این امواج نتیجه پتانسیل های کار نورون های عصبی قشر مغزند که در سطح مغز ظاهر می شوند ... خاصیت مهم این امواج بسامد آنها است. گستره معمولی این بسامد از یک تا ۶۰ هرتز تغییر می کند... این امواج برحسب بسامد، ولتاژ، محل های تلاقی، شکل امواج و نقش هایی که دارند، ارزیابی می شوند.»۵
• اسکن (تهیه طرح های سه بعدی از بدن)
در سال های ۷۰-۱۹۶۰ برای تشخیص بیماری ها چهار روش جدید ابداع شد: الف _ گرمانگاری: نخستین روش گرمانگاری بود که در سال ۱۹۶۲ عرضه شد. می دانیم که هر جسمی که دمایش بالاتر از صفر مطلق (۲۷۳- درجه سلسیوس) باشد از خود امواجی تابش می کند که به نام امواج گرمایی معروف است. از این خاصیت یعنی انتشار امواج گرمایی از بدن انسان استفاده شده و اختلاف دمای قسمتی از بدن را به صورت تصویری رنگی تهیه می کنند. این روش برای تحقیق و بررسی رگ های خونی سطحی بدن مفید است و با آن می توان از وجود تومورها نیز باخبر شد.
ب- توموگرافی: پرتوهای ایکس می توانند از بافت های نرم بگذرند، لیکن میزان جذب یا عبور آنها به غلظت بافت بستگی دارد. چنانچه پرتو ایکس در مسیر خود از غده ای بگذرد، میزان جذب آن نسبت به وضعیتی که غده وجود نداشته باشد، تفاوت می کند. به کمک کامپیوتر می توانند تصویری را که از بدن گرفته اند، پردازش کنند و اطلاعات دقیق مربوط به ساختمان بدن و وجود غده را مشخص نمایند. عملی که با کمک پرتو ایکس و کامپیوتر برای تعیین غده ها صورت می گیرد را توموگرافی می نامند.
پ- هولوگرافی (تمام نگاری): دنیس گابور فیزیکدان نوع جدیدی از عکاسی را در سال ۱۹۴۷ ابداع کرد که بعداً در موارد گوناگون از جمله در پزشکی از آن استفاده شد. هولوگرافی براساس خواص امواج متکی است و تصویری که از ریزشیء گرفته می شود، سه بعدی است. در این طریقه تصویری که از هر عضو بدن گرفته می شود، کاملاً همه قسمت های اطراف آن عضو دیده می شود. برای تهیه عکس سه بعدی معمولاً از پرتوهای لیزر استفاده می شود.
ت- دستگاه تشدید مغناطیسی NMR) ) :اساس این دستگاه بر این خاصیت است که هسته اتم های خاصی در صورت قرار گرفتن در میدان مغناطیسی امواجی از خود تابش می کنند که قابل ردیابی است. این پدیده در سال ۱۹۴۰ شناخته شد و کاربرد آن در پزشکی برای نخستین بار در سوئد توسط «اریش اودبلاد»۶ و از دهه ۱۹۵۰ شروع شد.
در سال ۱۹۷۳ در انگلیس از طریق ردیابی تابش تراکم اتم های هیدروژن در بافت های مختلف بدن نخستین تصویر NMR تهیه شد. از سال ۱۹۷۷ به بعد تصویر از مغز نیز به این وسیله گرفته شد.
منابع و مآخذ:
۱- ایزدیان، حبیب الله _ بیوفیزیک، حفاظت در مقابل اشعه _ دانشگاه تهران
۲- ترور آی. ویلیامز _ اختراعات و اکتشافات در قرن بیستم _ ترجمه لاله صاحبی _ انتشارات یگانه - ۱۳۷۵
۳- بلت، فرانک.ج _ فیزیک پایه _ ترجمه: ناصر مقبلی، محمد خرمی _ انتشارات فاطمی.
۴- کارل آرنیو، برندا سی نیو _ فیزیک در خدمت علوم بهداشت _ ترجمه علی اصغر تکالو _ آستان قدس
۵- معتمدی، اسفندیار _ فیزیک زنده _ انتشارات مدرسه
۶- معتمدی، اسفندیار _ ماورای صوت _ انتشارات مدرسه
۷- هشترودی، دکتر محسن _ جهان اندیشه، دانش و هنر _ کتابفروشی دهخدا
۸- هسل هوارد فلیتر _ آشنایی با فیزیک در پرستاری _ ترجمه جهانشاه میرزابیگی، پروین عزالدین زنجانی _ مرکز نشر دانشگاهی
پی نوشت ها:
۱- هنرهای مفید: پس از گذشت بیش از سه قرن، بعید به نظر می رسد که دریابیم آن چهل تن عضو جامعه سلطنتی از کلمه «هنرهای مفید» چه منظوری داشتند که به تعبیر خود آنان می بایست از کاربرد معلومات علمی الهام می گرفت. البته با رجوع به مباحث اولیه آنان روشن می شود که آنها مکانیزه کردن روند صنایع را به طور اخص در سر داشتند که قبلاً شروع شده بود و پیش بینی می شد که تا آغاز انقلاب صنعتی در یک قرن بعد به طور کامل شکوفا شود. نتیجتاً «هنرهای مفید» را می توان با تکنولوژی آن روز معادل دانست. اختراعات و اکتشافات قرن بیستم صفحه ۱۴
۲- صوت، امواج مکانیکی با بسامد ۲۰ تا ۲۰ هزار هرتز است. امواج کمتر از ۲۰ هرتز را فروصوت و امواج بالاتر از ۲۰ هزار هرتز را فراصوت می نامند.
۳- Echoscope
۴- Sonoscope
۵- فیزیک در پرستاری، تالیف هسل هوارد فلیتر. ترجمه: جهانشاه میرزابیگی و پروین عزالدین زنجانی، مرکز نشر دانشگاهی. ص ۳۹۶.
۶- Erich


نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:







جمعه 1 مرداد 1395 | 22:55 | الهه بهرامیان |